
JOURNAL OF APPROXIMATION THEORY 34, 384-396 (1982)

Approximation of Continuous Functions
by Generalized Favard Operators

W. GAWRONSKI AND U. STADTMULLER

Abteilung fiir Mathematik, Vniversitiit Vim,
Oberer Eselsberg. D-7900 Vim. West German)'

Communicated by P. L. Butzer

Received March 27. 1981

O. INTRODUCTION

It is well known (e.g., [8; 15]) that classical Bernstein polynomials,
generalized Bernstein polynomials, Baskakov operators, and other similar
operators approximate a functionJwith order O(I/n) provided the derivative
f' belongs to the class Lip I and satisfies a certain growth condition in case
of an unbounded interval. These operators are discrete, linear, and positive.
More precisely, they are of the form

JE C(I), (0.1 )

where Ie IR denotes throughout an interval, and the functions Pjn satisfy
Pjn(x) ~ 0, x E I, j E 7L, n E IN. More generally, the above order of approx
imation holds if IPjn(x)}b _oc is the n-fold convolution of a probability
lattice distribution with expectation x (see also [I; 4; II, Chap. 7; 17]).

To increase the rate of convergence (provided J is sufficiently smooth) we
mention two methods. By forming suitable linear combinations of operators
F n (e.g., [14]) or by taking iterates of Fejer-Korovkin type for F n [10; 121
the approximation order becomes O(n - r) when J E C2r(l), rEIN. But for
r ~ 2 the resulting operators are no longer positive.

Recently Butzer and Wehrens [6], and Swetits and Wood [161, among
others, have derived discrete, positive polynomial operators of Bernstein type
for approximating continuous functions on [-1, I]; these operators are of
the form

2n
Ln(f; x) = ~ J(Xj,2n) ~j,2ix),

j=O
JEC[-I,I]. (0.2)

r(Jj.2n being positive polynomials on [-1,1]. They showed that the
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corresponding saturation order is 1/n 2
• Despite the advantage that Ln is a

polynomial operator it should be pointed out that (0.2) involves the zeros
xj •2n E [-1, 1) of the 2nth Legendre polynomial and Cotes numbers, quan~

tities which can be computed only approximately. This is due to
discretization of an integral operator by means of the Gauss-Christoffel
quadrature formula.

In this paper we construct a discrete and positive operator (on C(IR» of
type (0, I), using equidistant nodes j/n, j E =, and for Pjn the "discrete
Gaussian kernel"

1 ((j-nx)2)
gjn(x):= _r;;;: exp - 2 2 2 '

V 271: nOn nOn
(0.3 )

j E E, n E IN, X E IR, an> O. This choice is suggested by Favard's approach
[9) of discretizing the singular integral of Gauss-Weierstrass

I _00

W(f;x;a):= I J(t)e- U - X )'/2a'dt,
yI2;c a '-00

by means of

a>O (0.4 )

(0.5)

with a~ = A./2n (A. being a positive constant) which is also its approximation
order [2; 3]. Therefore we consider the generalized Favard operator (0.5),
allowing a~ to be a more general null sequence. Using a functional equation
for a certain theta series (e.g., [7, pp. 63, 64; 5, p. 126; 3]) we obtain the
central result of this paper giving the asymptotic relation

, 1 J"~)
11m 2(Fn(f;x)-J(x» =-2-'
n--+CX) an

xE IR (0.6)

for JE C2(1R) with a suitable growth condition. It turns out that except for a
constant factor the choice a~ = log n/n 2 is best possible in (0.6). Moreover,
(0.6) holds for the truncated version of Fn(J; x), namely,

*. ,_ 1 )--' (j) (U-nx)2)F n (f; x) .- _ f - exp - 2 2 ,

yI2;c nan Ij -nxl <en n 2n On
(0.7)

where nOn Vlog l/an = o(cn), thereby showing that O(a~) is the saturation
order for F n and F; (Section 2). In the case o~ = log n/n 2 a comparison with
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( l.l)

the polynomial operator (0.2) shows that the computation of the finite
exponential operator F: requires "(log n)I+E terms" asymptotically (e > 0)
and the approximation order differs by a factor log n only. On the other
hand, it is not difficult to see that the order of approximation by means of
general positive operators of type (0.1) cannot be made better than O(I/n 2

)

in a certain sense (Section I).
In addition we prove a saturation theorem for the operators in question

(Section 2).

1. PRELIMINARY RESULTS

In this section we collect some auxiliary results. First consider the general
positive operator (0. I) and suppose that F n maps C(I) into itself. Then it is
known from the general theory of positive linear operators that the approx
imation of continuous functions is governed by the "central moments,"
defined by

ro,n(x) := Fn(l; x) - I = I Pjn(X) - I,
j

x E I, v E IN

(e.g., [8, Chap. 2]). Assuming the existence of the sums in (l.l) at least for
v= 0, I, 2, we prove ([x] denotes, as customary the largest integer not
exceeding x).

LEMMA 1. (i) If SUPxel rv.n(x) is finite for v = 0,2, then

~~~r2,n(X)~4~2(1+ ~~~ ro,n(+(j++))).
(1/ n)lj + 1/2) ef

(ii) The particular choice (I = IR)

!
nx - [nx],

Pjn(x) = Pjn(x):= 1- nx + [nx],
0,

gives ro.n(x) = r•.n(x) == 0 and

1
sup r2,n(x) = -42'
xell n

j=[nx]+l

j= [nx]

otherwise
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Proof (i) For every n E IN there exists a real number X n E I such that

for all j E Z: (1.2 )

e.g., x n := (m + 1/2)/n E I satisfies (1.2) for suitable mE Z. Hence we have,
since Pjn >0,

(ii) The relations ro,n(x) = rl,n(x) == °are trivial and

sup r2.n(x) = sup ~ (1- - X)2 Pjn(x)
XE R XE R j _n

I , I
=2"max(nx- [nxJ-(nx- [nx])-) =-42'n xER n

It is known from the general theory of approximation by positive linear
operators that the quality of approximation of continuous functions is deter
mined by the largest of the quantities r,.,n(x), v = 0, 1,2 (e.g., [8, Chaps.
2,5]). Hence part (i) of Lemma I indicates that the approximation order of
the operators (0.1) in general cannot be better than O(l/n 2

) provided
r,o,n(x) ---> °as n ---> 00, l' = 0, 1,2, and the function f is not linear (compare
also Theorem 2). In many cases we have rv •n = 0(r2.n ) as n ---> 00, v = 0, I
and therefore the order of approximation is given by r 2.,.' In the classical
examples mentioned at the beginning of the Introduction roon(x) = r',n(x) are
even == 0.) The particular choice Pjn = Pjn in Lemma I(ii) leads to an
operator of type (0.1) having the saturation order

I
2" (nx - [nx ])(1 - nx + [nx])
n

with maximum 1/4n 2
• Thus the sequence Pjn(x) leads to an optimal operator

(0.1) in the sense just indicated, but for obvious reasons the functions Pjn are
desired to be "smooth" and "elementary." To this end in the sequel we
extend Favard's approach of discretizing the singular integral of
Gauss-Weierstrass (0.4) and consider the case Pjn = gjn defined in (0.3)
which leads to the operator Fn in (0.5).

Using a well-known functional equation and the Fourier series expansion

MO')4-4-5
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of a certain theta series we start with the identity (e.g., [5, p. 126; 7,
pp. 63, 64; 3])

y' _ 1 ~~ (U-nX)2)
...... gjn(x) - _r-c. ~ exp - 2 2 2

j V 2n nan j = - (1) nan
oc
'\ e - 21[2l-,2n2(1~ e2n:il'.tn

L'=-'X'

Further we put

Cfj

= 1 + 2 ~ e - h2v2n2a~ cos(2nvxn).
f'= 1

(1.3 )

(1.4 )

Differentiating (1.3) with respect to x the following estimates for the
moments rv.n defined in (1.1) are readily verified.

LEMMA 2. If an> °for n ~ no, then

I I 2bn I ()I 4nna~bn
ro.n(x) ~ 1- b

n
' r l.n x ~ (1 - b

n
)2 ,

2 2 I 2 2 4 bn(1 + bn )
Ir2,n(x)-anl~anlro,n(x) +8n n an (l-b

n
)3

for all x E IR and n ~ no. Furthermore we have

r4.n(x) = O(a~ + n4a~bn)' n 4 00,

uniformly in x E IR provided an 4 0, but nan 4 00.

Actually a refined inspection of (1.3) and its derivatives shows that except
for constants the estimates in Lemma 2 are asymptotically sharp. But the
results in its present form are sufficient for our purpose.

Looking at the Bohman-Korovkin theorems [e.g., [8. Chap. 21) we
demand r,..n(x) 4 °as n 4 00, V= 0, 1,2, in order to have uniform approx
imation on compact intervals. By the first part of Lemma 2 this forces an 4 °
and nUn 400 as n 400. To obtain a good rate of convergence ro.n' rl,n' and
r2 ,n nearly have to be of the same order of magnitude. Under this postulation
we choose a ~ as

-2 log n
un :=~ (1.5)
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leading below to a rate of convergence being optimal in the sense just
indicated. (Taking into account multiplicative constants the choice a~ =
log n/n2n2 would be optimal.) We exhibit this case by specializing Lemma 2.

LEMMA 2'. If a~ = a~ = log n/n 2
, then

for all x E IR and n ~ 2; moreover

uniformly in x E IR as n ....... 00.

Next, we estimate the discrepancy between Fn and r; (see (0.3), (0.5),
and (0.7». In the sequel suppose that {cn} is a sequence of positive numbers
satisfying

(1.6)

Further we introduce the truncated moments by (x E IR)

rri.n(x) :=F:(l;x)-l = I: gjn(x)-l
Ij -nxl ';;;Cn

and

r,~n(x):=F:((t-xy;x)= L (~ -X)"gjn(X),
lj-nX/';;;Cn

and prove

(1.7)

vE IN, (1.8)

LEMMA 3. (i) Suppose that an> 0 and (cn - l)/nan~ y'2 for n ~ no.
Then we have for x E IR and n ~ no
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and

holds uniformly in x E IR,

as n ---> 00, provided On ---> O.

(ii) Assume that f: IR ---> IR satisfies the growth condition

x E IR. ( 1.9)

for some constants M, K ~ O. Then for all n, with an> 0 and

(cn - 1)/non > Kan

holds for all x ElF<.

Proof (i) For v = 0, 1,2 we have

r:.n(x) = r,',n(x) - '\'
lj-nxl>cn

=: r,..n(x) - R,..n(x).

Thus we obtain with ~j.n := (j - nx)/non

,-
IR ()I"::: /2 ,. \' -t' 12;:,' (;: ;:),'.n X -..::: \ ----;-On _ e J.n "j.n "j+l.n-"j,n·

lJ.n >an

If~~y'2, then e-t'12~" (v=O, 1,2) is decreasing and thus we can estimate
the sum by an integral.

By (1.6), we obtain for n ~ no

(2 .00

= I-a'- I t" e- t '/2 dt
\! 7[ n-(cn-il/nun
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I
,Cn~ l'

{f ( 1(C n _ 1) 2) n
~ A / - exp - - -- " a ,

\j n 2 na ' n

n . I 2 (C ll - 1 nan)
an --+--,

, nan Cn - 1

v=o

v = 1

v= 2.

391

Now the assertions concerning r,~n for v = 0, 1,2 follow immediately by
using Lemma 2; the estimate for r~n follows analoguously.

(ii) With the notations above we have

IFn(f; x) - r;(f; x)1

~ M \' exp (K I:L 1_ U- nx)2)--:: J27i nan Ij-~ >C
n

n 2n2a~

~M~ I exp(Kon~j,n+Klxl-~J.,,/2)(~j+l.n-~j.n)
lJn >a n

(2 ( K
2
a

2
)=M \/-;exp K[xl +T

X I exp (-+(~j.n - Kan)2) (c;j+ I.n - c;j,n)
lj.n>a n

~M fl;exp (K1X 1+ K~a~ )

-00 ( 1 )
xt,,_l)!nanexp -T(t-Kan)2 dt.

Now a similar estimate as in the proof of part (i) completes the proof.
To have an idea of the concrete order of magnitudes in Lemma 3 again we

exhibit the case (1.5) and choose

an = an := (log nr12 +<, e > 0, n> 2, (1.5 )'

in (1.5). Using Lemma 2' we obtain from Lemma 3

LEMMA 3'. (i) For x E IR and n >8 we have

* 3 f8 1 -2 "
Iro,n(x)I~7+ \/-; a exp(-an/8)=.an ,

n
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I
* () log n Ir2 x ---,n n2

81 log
2

n )I; log n (- 2 ) -2 I

~ 2 '+2 + --2- an +-=- exp(-an/8)=:Yn'
n " 1C n an

holds uniformly in x E IR as n -+ 00.

(ii) If the function f: IR -+ IR satisfies the growth condition (1.9), then
for all n ~ 8 with n/vlog n) 2K and for all x E IR,

(f M eK1x1 + 1/8

IFnU; x) - F:U; x)1 ~ \}-;;-----
n if (1 __1 _K)

n log n n

X exp ( - ~~ ( 1 - IO~ n _ ~) 2) .

2. MAIN RESULTS

In this section we prove an explicit inequality for the approximation error
and we determine the saturation class for Fn and r:. For a compact interval
I and a function f E qI) we define the modulus of continuity by

w(J, 15, I) := sup V(x\) - f(x 2 )!,
Xl.X2 E1

Ix,-x21<b

b> O. (2.1 )

for x E (a, b).

THEOREM 1. Suppose that the real function f is defined on I = [a, b \.
a. b E IR, that an,/3n' Yn are defined as in Lemma 3 and the integer no(x) is
given by

no(x) :=min lnEIN I c; <min(X-a,b-X)~

(i) If fE ql), an> 0, (cn - l)/nan~ 0, and n ~ no(x), then for
x E (a, b)

IF:U; x) - f(x)1 ~ \ f(x)1 an + 2(1 + an) w(J, Vrf,n(x), 1), (2.2)

where the asymptotic behaviour of rt.n(x) is given in Lemma 3(i).
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(ii) Iff' E C(I), an> 0, (cn - l)jnan>Vi, and n >no(x), then for
xE(a,b)

IF;(f;x) - f(x)1 ~ If(x)1 an +If'(x)1Pn

+ (2 + an) Vrt.n(x) w(f', Vrt.n(x), 1). (2.3)

(iii) Iff E C2(I), an --+ 0, and an' Pn' Yn = o(a~) as n --+ 00, then

1 f"(x)
lim 2(F;(f;x)-f(x»=-2-
n-+CX) (J n

(0.6)*

uniformly on any subset [c, dJ c I with a <c < d < b.

Proof Parts (i) and (ii) are immediate consequences of Lemma 3(i)
above and Theorem 2.3 in [8]. For part (iii) we write the Taylor series
expansion off at x

(t X)2
f(t)=f(x)+(t-x)f'(x)+ ~ f"(x) + (t-X)21'f(t-X),

where II'f(h)1 < e if Ih I< o. Then we obtain

F;(f; x) - f(x)

= )'
~

jj - nxi <en
(f (~ ) - f(x) ) gjn(x) + rt,n(x) f(x)

1
= rt,n(x)f(x) + r~n(x)f'(x) + Trt.n(x)f"(x)

+ )' (L_ X )2 I'f (L- x ) gjn(x)
Ij-nxl <en n n

a 2

= i f"(x) + o(a~)

by Lemma 3(i), the o-term being independent of x E [c, d].

Remarks. (i) It is obvious how to modify Theorem 1 in a local version.
Furthermore Lemma 3(ii) implies that (0.6)* remains true with F n in place
of F; in the presence of the growth condition (1.9) (note that an = o(a~».

(ii) Sufficient conditions for an,Pn,Yn=o(a~) are

2 log n
a n >-2-2

n n
and
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(0.6 )'

provided (J n -+ O. This includes the classical Favard operators «(J~ = A/2n)
and the optimal case.

The "Optimaf' Case (J~ = 6~ and an = iin

(iii) In this case we trivially have a~,p~,y~=0(logn/n2) (see
Lemma 3'(i)) and (0.6)* reads

. n
2 *. f"(x)

hm -I- (Fn (I, x) - f(x)) =--.
n~ex: og n 2

(iv) The "leading" terms in the explicit inequalities (2.2) and (2.3) are
given by the right most terms: that is, we have from (2.2) and (2.3)

and

* . Vlog n (.,. Vlog n )IFn(I, x) - f(x)1 ~ c2 OJ f, ,I ,
n n

(2.2)'

(2.3 )'

if f E C(I) and f' E C(I), respectively, and x E (a, b), c i are positive
constants.

(v) It is well known (e.g., [13, p. 18]) for general operators of type
(0.1) where 1Pjn(x)} ClJ ex: is the n-fold convolution of a probability distribution
with expectation x such as Bernstein polynomials and similar operators that
(f oF 0 in a neighborhood of x)

'\~ f (L) Pjn(x) = " f (L) Pjn(x)(1 + 0(1))
j n Ij-nxl<;;cn n

provided cn/Vii -, v:; as n -+ a:J. However, in our case Pjn = gjn with (J~ = 6~
asymptotically "(log n)h' term~" Rre sufficient. For practical purposes often
it is enough to choose, for instance, e = 1/2, 1,2.

Next, we determine the saturation classes by the following saturation
theorem. For notation see [8 [.

THEOREM 2. Suppose that I = [a, b1, a, b E IR, f E C(I) and an' Pn' Y"
(defined in Lemma 3) satisfy an,p", y,,=o«(J~) as 0,,-+0. Then F: is
saturated on II = [c, d1, a < c < d < b, with order o~, the trivial class
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Proof The proof follows along standard lines using a general saturation
theorem on linear positive operators [8, Theorem 5.3]. By Lemma 3(i) it
follows that

and

sup r;jx) = O(O"~),
xell=t

n---> 00, v=O,I,

n ---> 00.

Now because of (0.6)* Theorem 2 follows from Theorem 5.3 in [8].

Remark. Since in Theorem 5.3, [6], only asymptotic conditions are
involved, Theorem 2 carries over to F n , if (1.9) holds.
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